

Steady-State

Transient State

Transient State Example

Transient State Example cont'd

Concept

- Consider a parallel resistor network (Fig.1)
- *i*_x can be determined through equation 1
- R_T can be determined through equation 2
- Current divider

Figure 1

Equation 1:
$$i_X = \frac{R_T}{R_X + R_T} I_T$$
 Equation 2: $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \rightarrow R_T = \frac{R_1 R_2}{R_1 + R_2}$

Example: Two 25A fuse in parallel subjected to a 100,000 cycle square pulse with peak current of 100A for 5ms (Fig. 3)

Figure 4

Conclusion

- Upper Limit:
 - UL or internal safety requirements
- Lower Limit:
 - Steady-state requirement (20.5A)
 - Transient state (88A²sec)